Построение эллипса циркулем в изометрии

Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо 

Далее: Прямоугольная изометрическая проекция
Во фронтальной косоугольной диметрической проекции принято следующее положение аксонометрических осей: ось ох направлена горизонтально; ось оу — под углом 45° к оси ох и ось oz — вертикально . По этим осям и следует вести построение фронтальной проекции предмета. Допускается применять «левое» расположение осей.
Линейные размеры, параллельные оси оу, откладывают в масштабе, вдвое меньшем, чем по осям ох и oz. Характерным для этого вида аксонометрических проекций является то, что фигуры, параллельные фронтальной плоскости проекций V, изображаются без искажений. Поэтому такие аксонометрические проекции и называются фронтальными. Построение фронтальной проекции всегда начинают с нанесения осей, которые проводят тонкими сплошными линиями. Последовательность построения фронтальных проекций некоторых фигур показана на рис. 2.
Рис. 1. Положение аксонометрических осей:
а — «правое»; б — «левое».
Если расположить ось вращения цилиндра параллельно оси oz или ох, то его основания проецируются в виде эллипсов.
Фронтальная диметрическая проекция куба с вписанными в его грани окружностями изображена на рис. 34. Окружность, расположенная на передней грани куба, изображается без искажений, а окружности, расположенные на верхней и боковой гранях, изображаются в виде эллипсов одинаковой формы и размеров.

Второй способ – разделить циркулем окружность произвольного радиуса на 6 При построении эллипсов через их центры проводят 

Для построения эллипса на гранях находят восемь точек, которые затем плавно соединяют по лекалу. Четыре точки определяются сразу — это середины сторон параллелограммов, изображающих грани куба. Четыре другие точки определяются на диагоналях параллелограммов путем переноса их с диагоналей квадрата.
Для построения эллипса на верхней грани сначала на передней грани куба отмечают точки 1 и 2 пересечения диагоналей квадрата с окружностью. Затем из этих точек проводят прямые параллельно оси oz до верхнего ребра куба (верхней стороны квадрата). Из полученных на ребре точек проводят прямые параллельно оси оу до пересечения их с диагоналями параллелограмма. Это и будут точки эллипса.
Рис. 3. Фронтальная днметрическая проекция куба с вписанными в его грани окружностями.
Аналогично находят диагональные точки при построении эллипса на боковой грани куба. Соединив найденные точки плавной кривой по лекалу, получим эллипсы.
Угол наклона большой оси эллипса равен примерно 7° по отношению к оси ох, если эллипс изображает окружность на верхней грани куба, и по отношению к оси oz, если эллипс изображает окружность на боковой грани куба. Малую ось эллипса располагают перпендикулярно большой.
На практике при построении фронтальных проекций деталей цилиндрической формы обычно вычерчивают не эллипсы, а овалы. Форма овала близка к форме эллипса, но вычертить его более просто, так как построение выполняют циркулем по правилам сопряжений.

Овалом называется кривая линия, по начертанию похожая на эллипс, но выстроенная с помощью циркуля. Рассмотрим построение 

Рис. 5. Прямоугольные проекции модели.
Овал на верхней грани куба строят следующим образом: – проводят аксонометрические оси ох, оу и oz; затем из центра О — окружность диаметром, равным диаметру окружности, изображенной на рис. 34; – проводят большую ось овала под углом 7° к оси ох и перпендикулярно к ней малую ось. Продолжение малой оси пересекает окружность в точках O1 и 02; – из точек Oi и,02, как из центров, проводят вспомогательные дуги радиусом 001 равным 002, до пересечения с продолжением малой оси в точках 03 и 04, являющихся центрами больших дуг овала; – проводят прямые 04Л и 03В, которые пересекут большую ось овала в точках 06 и Ов, являющихся центрами малых дуг овала; – из центров 03 и 04 проводят большие дуги овалов радиусом 04А, равным 03В; – из центров 08 и 06 проводят малые дуги, замыкающие овал, радиусом ОьА, равным ОйВ.
Построение овала — приближенного изображения окружности — в профильной плоскости аналогичное.
Рассмотрим построение фронтальной диметрической проекции модели по чертежу, приведенному на рис. 5. Сначала проводят оси проекций ох, оу и oz. Наиболее характерным видом модели является вид спереди, поэтому построение фронтальной проекции начинают с вычерчивания в плоскости осей ох—oz такого же изображения, каким является вид спереди. В этой плоскости тонкими, едва заметными линиями намечают прямоугольник, соответствующий наибольшей высоте и ширине модели. Для этого по оси ох от точки о влево откладывают 60 мм (ширина модели), а по оси oz вверх — 40 мм (высота модели). Из полученных отметок проводят прямые, соответственно параллельные осям проекции ох и oz. Посередине габаритного прямоугольника проводят вертикальную осевую линию.
По отношению к этой осевой линии в габаритном прямоугольнике вычерчивают контур модели, соответствующий очертанию ее изображения на виде спереди. Из угловых точек вычерченного контура проводят параллельные прямые под углом 45° по отношению к оси ох, соответствующие направлению оси оу во фронтальной проекции.
На наклонных прямых откладывают размер толщины модели, уменьшенной в два раза, т. е. 50 : 2 = 25 мм. Полученные на наклонных прямых отметки соединяют последовательно прямыми линиями, в результате чего получают изображение модели во фронтальной проекции. Все указанные построения выполняют тонкими, едва заметными линиями. По окончании построения обводят полученное изображение контурными линиями и удаляют линии построения и линии невидимого контура.

Проще всего построить эллипс в изометрии, вписав фигуру в ромб, X и Y. Для более точного построения фигур используйте циркуль, поместив его 

Деление окружности на равные части и построение правильных многоугольников. 37. 3.5.  Построение эллипса. 47. 4. МЕТОДЫ  Перед работой циркулем-измерителем необходимо иглы выставить на одном уровне  Для построения изометрической проекции цилиндра и конуса проводят оси х и у, 

Цели урока: Показать практическое применение построение эллипса. Лекальные кривые нельзя провести с помощью циркуля. Чтобы их Эллипс, как изометрию окружности, можно построить по восьми точкам,